Asymmetric Synthesis of Epicylindrospermopsin via Intramolecular Nitrone Cycloaddition. Assignment of Absolute Configuration

James D. White* and Joshua D. Hansen
Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003

Received December 14, 2001

Cylindrospermopsin (1) and its C7 epimer $\mathbf{2}$ are potent naturally occurring environmental toxins which contain a guanidinium unit embedded in a unique tricyclic skeleton. ${ }^{1}$ The isolation of cylin-

1, $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}$ (Cylindrospermopsin)
2, $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}$ (Epicylindrospermopsin)
drospermopsin by Moore from the cyanobacterium Cylindrospermopsis raciborskii was followed by a detailed structural investigation based upon NMR evidence which concluded incorrectly that the structure of this substance was represented by $2 .{ }^{2}$ Subsequent isolation of cylindrospermopsin from the alga Umezakia natans found in Japan ${ }^{3}$ and the isolation of both cylindrospermopsin ${ }^{4}$ and an epimer ${ }^{5}$ from Aphanizomenon ovalisporum present in a lake in Israel did not rectify this misassignment, nor did a synthesis of (\pm)-cylindrospermopsin by Snider, ${ }^{6}$ which unfortunately failed to distinguish between this substance and its C7 epimer. A recent unambiguous synthesis of $(\pm)-\mathbf{2}$ by Weinreb has established definitively that this is the structure of 7 -epicylindrospermopsin; ${ }^{7}$ our approach, which was directed toward an asymmetric synthesis of $\mathbf{2}$ in the belief that this structure corresponded to cylindrospermopsin, thus became a prospective route to its natural C7 epimer. ${ }^{8}$ The key feature of our route is an intramolecular nitrone cycloaddition ${ }^{9}$ that sets configuration at C 10 and C 12 of $\mathbf{2}$ from a precursor assembled from the hydroxylamine 3 and aldehyde 4.

Asymmetric crotylation of p-bromobenzyloxyacetaldehyde (5) with the reagent obtained from cis-2-butene and (+)-diisopinylcampheylmethoxyborane ${ }^{10}$ gave the syn homoallylic alcohol 6 in 94% enantiomeric excess, as determined by NMR analysis of its Mosher ester ${ }^{11}$ (Scheme 1). Displacement of the mesylate 7 with sodium azide, followed by reduction of the azide with triphenylphosphine, afforded the inverted primary amine 8 , which was condensed with p-anisaldehyde. The resulting imine was oxidized in situ with m-chloroperbenzoic acid to give oxaziridine 9 , and upon treatment with hydroxylamine hydrochloride this substance furnished 3. ${ }^{12}$

Synthesis of the aldehyde 4 commenced from (R)-methionine, which upon exposure to excess benzyl bromide yielded $(R)-2-(N, N-$ dibenzyl)butyrolactone (10) (Scheme 2). ${ }^{13}$ The latter was reacted with 4-lithio-2,6-dimethoxypyrimidine ${ }^{14}$ in the presence of cerium trichloride to furnish a quantitative yield of lactol $\mathbf{1 1}$ as a mixture of stereoisomers. Treatment of $\mathbf{1 1}$ with triphenylmethyl chloride gave the primary trityl ether 12, and reduction of this ketone with L-Selectride produced the syn amino alcohol $\mathbf{1 3}$ along with its anti

[^0]Scheme 1^{a}

${ }^{a}$ Conditions: (i) cis-2-butene, t - $\mathrm{BuOK}, n-\mathrm{BuLi}$, (+)-MeOB(Ipc) $)_{2}, \mathrm{Et}_{2} \mathrm{O}-$ THF, 45%; (ii) $\mathrm{Ms}_{2} \mathrm{O}$, pyr, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 100 \%$; (iii) $\mathrm{NaN}_{3}, \mathrm{DMF}, 85^{\circ} \mathrm{C}$; (iv) $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}, 56 \%$ from 7; (v) $p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CHO}, \mathrm{MeOH}, \mathrm{Na}_{2} \mathrm{CO}_{3}, 60$ ${ }^{\circ} \mathrm{C}$; (vi) m - $\mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \rightarrow$ room temperature; (vii) $\mathrm{HONH}_{2} \cdot \mathrm{HCl}$, $\mathrm{MeOH}, 0^{\circ} \mathrm{C} \rightarrow$ room temperature, 60% from 8.

Scheme 2^{a}

${ }^{a}$ Conditions: (i) 4-Bromo-2,6-dimethoxypyrimidine, n - $\mathrm{BuLi}, \mathrm{CeCl}_{3}$, $\mathrm{Et}_{2} \mathrm{O}-\mathrm{THF},-78^{\circ} \mathrm{C} \rightarrow$ room temperature, 97%; (ii) $\mathrm{Ph}_{3} \mathrm{CCl}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \Delta, 93 \%$; (iii) L-Selectride, THF, 84%; (iv) TBSOTf, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}$, 87%; (v) $\mathrm{HCO}_{2} \mathrm{H}, \mathrm{THF}, 100 \%$; (vi) $\mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{EtOH}, 81 \%$; (vii) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 68 \%$; (viii) TPAP (cat.), NMO, mol. sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 91%.
isomer in the ratio $12: 1$. The secondary alcohol of $\mathbf{1 3}$ was protected as its tert-butyldimethylsilyl ether 14, after which the trityl group was removed quantitatively with formic acid. The N, N-dibenzyl moiety was cleaved by hydrogenolysis to give primary amine $\mathbf{1 5}$, which was then converted to its N-Boc derivative, and subsequent oxidation of the primary alcohol with Ley's reagent ${ }^{15}$ produced aldehyde 4 in nine steps and 20% overall yield from (R)-methionine.

Condensation of hydroxylamine $\mathbf{3}$ with aldehyde $\mathbf{4}$ gave (Z) nitrone 16 in good yield (Scheme 3), and intramolecular cycloaddition of 16 in refluxing toluene afforded the unstable oxazabicyclo[2.2.1]heptane derivative 17, accompanied by two unidentified

Scheme 3^{a}

(v)

$19 \quad \mathrm{Ar}=p-\mathrm{BrC}_{6} \mathrm{H}_{4}$

${ }^{a}$ Conditions: (i) MeOH mol. sieves, $\Delta, 60 \%$; (ii) Toluene, mol. sieves, Δ; (iii) $\mathrm{Zn}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$; (iv) $\mathrm{HCl}, \mathrm{MeOH}, 68 \%$ from 16; (v) $\mathrm{CO}(\mathrm{Im})_{2}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{MeOH}, 85 \%$; (vi) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (vii) L-Selectride, THF; (viii) $\mathrm{H}_{2} / \mathrm{C}, \mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{EtOH}, 55 \%$ from 19.
stereoisomers in the ratio 10:5:1. As predicted from conformational analysis of 16, the major product $\mathbf{1 7}$ arose from an exo cycloaddition to the $r e$ face of the terminal alkene in the orientation shown. ${ }^{16}$ In situ reduction of $\mathbf{1 7}$ with zinc and ammonium chloride followed by acidic removal of the Boc group furnished piperidine $\mathbf{1 8}$ in which five of the six stereocenters correspond to those of $\mathbf{2}$. Before inverting the C12 hydroxyl group, it was decided to bridge the piperidine nitrogen and the amino function at C 8 via a urea, and for this purpose 18 was treated with carbonyldiimidazole to produce 19. The secondary alcohol of 19 was oxidized to a ketone, and subsequent reduction of this substance with L-Selectride afforded the 12β alcohol as the major product ($\beta: \alpha>15: 1$). Hydrogenolysis of the primary p-bromobenzyl ether gave the crystalline diol 20 whose relative stereostructure was confirmed by X-ray crystallographic analysis.

Diol $\mathbf{2 0}$ was converted to azide 21, and the remaining secondary hydroxyl group was protected as its triethylsilyl ether 22 (Scheme 4). Exposure of $\mathbf{2 2}$ to trimethyloxonium tetrafluoroborate in the presence of potassium hexamethyldisilazide gave the O-methylated derivative $\mathbf{2 3}$ which was subjected to catalytic hydrogenation over palladium-on-carbon. The resultant primary amine underwent spontaneous cyclization to give guanidine $\mathbf{2 4}$, and subsequent exhaustive hydrolysis in concentrated hydrochloric acid led to cleavage of silyl ethers as well as methyl ethers attached to the pyrimidine nucleus to yield $\mathbf{2 5}$. This diol was shown to be identical by comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra with the corresponding racemic substance prepared by Weinreb, ${ }^{7}$ and sulfation as previously described ${ }^{6}$ gave (-)-7-epicylindrospermopsin (2) accompanied by the bis sulfate of $\mathbf{2 5}$ (ca. 2.5:1, respectively). These substances were separated by HPLC, and purified $\mathbf{2}$ was found to have spectral data in good agreement with those recorded for both natural ${ }^{5}$ and synthetic ${ }^{7}$ epicylindrospermopsin. The specific rotation of synthetic material establishes that the absolute configuration of natural epicylindrospermopsin is $7 S, 8 R, 10 S, 12 S, 13 R, 14 S$, as represented by 2 .

Scheme 4^{a}

(ii) $\quad \mathbf{2 1}, X=\mathrm{N}_{3}, R=\mathrm{H}$
23
(ii)

${ }^{a}$ Conditions: (i) (a) $\left(\mathrm{Cl}_{3} \mathrm{CO}\right)_{2} \mathrm{CO}$, THF; (b) $\mathrm{NaN}_{3}, \mathrm{DMF}, 49 \%$; (ii) TESOTf, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 99 \%$; (iii) KHMDS, $\mathrm{Me}_{3} \mathrm{O}^{+} \mathrm{BF}_{4}^{-}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iv) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}$; (v) HCl (conc.) Δ, 21% from 22; (vi) $\mathrm{SO}_{3} \cdot \mathrm{pyr}$, DMF, 63%.

Acknowledgment. We are indebted to Hyunik Shin whose insights created the initial impetus for this project, to Professor Alexandre F. T. Yokochi for the X-ray crystal structure of 20, and to Professor Steven Weinreb, Pennsylvania State University, for helpful correspondence. Financial support was provided by the National Science Foundation (0076103-CHE).

Supporting Information Available: Experimental procedures and characterization data and X-ray crystallographic data for 20 (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) For a recent review of the biological properties and synthetic approaches to cylindrospermopsin, see: Murphy, P. J.; Thomas, C. W. Chem. Soc. Rev. 2001, 30, 303.
(2) (a) Ohtani, I.; Moore, R. E.; Runnegar, M. T. C. J. Am. Chem. Soc. 1992, 114, 7941. (b) Moore, R. E.; Ohtani, I.; Moore, B. S.; DeKoning, C. B.; Yoshida, W. Y.; Runnegar, M. T. C.; Carmichael, W. W. Gazz. Chim. Ital. 1993, 123, 329
(3) (a) Harada, K.; Ohtani, I.; Iwamoto, K.; Suzuki, M.; Watanabe, M. F.; Watanabe, M.; Terav, K. Toxicon 1994, 32, 73. (b) Terav, K.; Ohmori, S.; Igarashi, K.; Ohtani, I.; Watanabe, M. F.; Harada, K. I.; Ito, E.; Watanabe, M. Toxicon 1994, 32, 833 and references therein.
(4) Banker, R.; Carmeli, S.; Hadas, O.; Teltsch, B.; Porat, R.; Sukenik, A. J. Phycol. 1997, 33, 613.
(5) Banker, R.; Teltsch, B.; Sukenik, A.; Carmeli, S. J. Nat. Prod. 2000, 63, 387.
(6) Xie, C.; Runnegar, M. T. C.; Snider, B. B. J. Am. Chem. Soc. 2000, 122, 5017.
(7) Weinreb, S. M.; Heintzelman, G. R.; Fang, W. K.; Keen, S. P.; Wallace, G. A. J. Am. Chem. Soc. 2001, 123, 8851.
(8) For earlier synthetic studies directed toward cylindrospermopsin, see: (a) Heintzelman, G. R.; Parvez, M.; Weinreb, S. M. Synlett 1993, 551. (b) Snider, B. B.; Harvey, T. C. Tetrahedron Lett. 1995, 36, 4587. (c) Heintzelman, G. R.; Weinreb, S. M.; Parvez, M. J. Org. Chem. 1996, 61, 4594. (d) Snider, B. B.; Xie, C. Tetrahedron Lett. 1998, 39, 7021. (e) McAlpine, I. J.; Armstrong, R. W. Tetrahedron Lett. 2000, 41, 1849. (f) Keen, S. P.; Weinreb, S. M. Tetrahedron Lett. 2000, 41, 4307. (g) White, J. D.; Hansen, J. D. Abstracts of Papers; 219th National Meeting of the American Chemical Society, San Francisco, CA; American Chemical Society: Washington, DC, 2000; ORGN 812. (h) Djung, J. F.; Hart, D. J.; Young, E. R. R. J. Org. Chem. 2000, 65, 5668. (i) Looper, R. E.; Williams, R. M. Tetrahedron Lett. 2001, 42, 769.
(9) (a) Jorgenson, K. A.; Gothelf, K. V. Chem. Rev. 1998, 98, 863. (b) Confalone, P. N.; Huie, E. M. In Organic Reactions; Kende, A. S., Ed.; Wiley: New York, 1998; Vol. 36, pp 3-173.
(10) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 5919.
(11) Sullivan, G. R.; Dale, J. A.; Mosher, H. S. J. Org. Chem. 1973, 38, 2143.
(12) Grundke, G.; Keese. W.; Rimpler, M. Synthesis 1987, 1115.
(13) Reetz, M. T.; Schmitz, A.; Holdgrün, X. Tetrahedron Lett. 1989, 30, 5421.
(14) Langley, B. W. J. Am. Chem. Soc. 1956, 78, 2136.
(15) Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639.
(16) Precedent for this mode of cycloaddition can be found in: (a) Oppolzer, W.; Siles, S.; Snowden, R. L.; Bakker, B. H.; Petrzilka, M. Tetrahedron 1985, 41, 3497. (b) Hoffmann, R. W.; Endesfelder, A. Justus Liebig Ann. Chem. 1986, 1823.
JA012709R

[^0]: * Corresponding author. E-mail address: james.white@orst.edu.

